Data fusion with Gaussian processes for estimation of environmental hazard events
نویسندگان
چکیده
منابع مشابه
Sensor fusion with Gaussian processes
This thesis presents a new approach to multi-rate sensor fusion for (1) user matching and (2) position stabilisation and lag reduction. The Microsoft Kinect sensor and the inertial sensors in a mobile device are fused with a Gaussian Process (GP) prior method. We present a Gaussian Process prior model-based framework for multisensor data fusion and explore the use of this model for fusing mobil...
متن کاملThe Rate of Entropy for Gaussian Processes
In this paper, we show that in order to obtain the Tsallis entropy rate for stochastic processes, we can use the limit of conditional entropy, as it was done for the case of Shannon and Renyi entropy rates. Using that we can obtain Tsallis entropy rate for stationary Gaussian processes. Finally, we derive the relation between Renyi, Shannon and Tsallis entropy rates for stationary Gaussian proc...
متن کاملLatent Gaussian Processes for Distribution Estimation of Multivariate Categorical Data
Sample code Thickness Unif. Cell Size Unif. Cell Shape Marginal Adhesion Epithelial Cell Size Bare Nuclei Bland Chromatin Normal Nucleoli Mitoses Class 1000025 5 1 1 1 2 1 3 1 1 Benign 1002945 5 4 4 5 7 10 3 2 1 Benign 1015425 3 1 1 1 2 2 3 1 1 Benign 1016277 6 8 8 1 3 4 3 7 1 Benign 1017023 4 1 1 3 2 1 3 1 1 Benign 1017122 8 10 10 8 7 10 9 7 1 Malignant 1018099 1 1 1 1 2 10 3 1 1 Benign 101856...
متن کاملOn Estimation of Regularity for Gaussian Processes
We consider a real Gaussian process X with unknown smoothness r0 where r0 is a nonnegative integer and the mean-square derivative X (r0) is supposed to be locally stationary of index β0. From n + 1 equidistant observations, we propose and study an estimator of (r0, β0) based on results for quadratic variations of the underlying process. Various numerical studies of these estimators derive their...
متن کاملGaussian Processes for Big Data
We introduce stochastic variational inference for Gaussian process models. This enables the application of Gaussian process (GP) models to data sets containing millions of data points. We show how GPs can be variationally decomposed to depend on a set of globally relevant inducing variables which factorize the model in the necessary manner to perform variational inference. Our approach is readi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Environmetrics
سال: 2020
ISSN: 1180-4009,1099-095X
DOI: 10.1002/env.2660